Change Dockerfile so that psycopg2 can be installed correctly using pip. (hint: it requires libpq-dev and gcc.)

Add mutual fund capability

modulize project structure complete
This commit is contained in:
George 2024-10-06 00:50:04 -07:00
parent a92d6b2804
commit 764fdd356e
6 changed files with 492 additions and 435 deletions

View File

@ -1,4 +1,5 @@
FROM python:alpine3.19 FROM python:3.12-slim
RUN apt-get update && apt-get install -y libpq-dev gcc
WORKDIR /app WORKDIR /app
COPY . /app COPY . /app
RUN pip install -U pip && pip install -r requirements.txt RUN pip install -U pip && pip install -r requirements.txt

View File

View File

@ -21,8 +21,6 @@ Could also come up with a value that ties to the trading volume.
import pandas as pd import pandas as pd
import numpy as np import numpy as np
import datetime as dt import datetime as dt
from numpy.fft import fft, ifft
import scipy.signal as sig
import plotly.express as px import plotly.express as px
from plotly.subplots import make_subplots from plotly.subplots import make_subplots
from dash import Dash, html, dcc, callback, Output, Input, State, no_update, ctx from dash import Dash, html, dcc, callback, Output, Input, State, no_update, ctx
@ -31,440 +29,14 @@ from flask_caching import Cache
from dash.exceptions import PreventUpdate from dash.exceptions import PreventUpdate
from dash_auth import OIDCAuth from dash_auth import OIDCAuth
import yahoo_fin.stock_info as si import yahoo_fin.stock_info as si
import hashlib
from dotenv import load_dotenv from dotenv import load_dotenv
import psycopg2
import os import os
import sys from sec_cik_mapper import StockMapper, MutualFundMapper
from sec_cik_mapper import StockMapper from subroutines import *
pd.options.mode.chained_assignment = None # default='warn' pd.options.mode.chained_assignment = None # default='warn'
load_dotenv() load_dotenv()
def connect_db():
conn = None
try:
conn = psycopg2.connect(
host=os.environ['DB_PATH'],
database=os.environ['DB_NAME'],
user=os.environ['DB_USERNAME'],
password=os.environ['DB_PASSWORD'],
)
except (Exception, psycopg2.DatabaseError) as error:
print(error)
sys.exit(1)
return conn
def get_watchlist(username : str):
if username:
table_name = f"{username + '_watch_list'}"
else: # username is None, use default table
table_name = "stock_watch_list"
QUERY1 = f'''CREATE TABLE IF NOT EXISTS {table_name}
(
tick character varying(5) NOT NULL,
description text,
PRIMARY KEY (tick)
);'''
QUERY2 = f"INSERT INTO {table_name} SELECT 'SPY', 'SPDR S&P 500 ETF Trust' WHERE NOT EXISTS (SELECT NULL FROM {table_name});"
QUERY3 = f"SELECT * FROM {table_name};"
with connect_db() as conn:
with conn.cursor() as curs:
curs.execute(QUERY1)
curs.execute(QUERY2)
curs.execute(QUERY3)
tuples_list = curs.fetchall()
df = pd.DataFrame(tuples_list)
return df
def remove_from_db(username, tick):
if username:
table_name = f"{username + '_watch_list'}"
else: # username is None, use default table
table_name = "stock_watch_list"
QUERY = f"DELETE FROM {table_name} WHERE tick = '{tick}';"
with connect_db() as conn:
with conn.cursor() as curs:
curs.execute(QUERY)
def insert_into_db(username : str, tick : str, name : str):
if username:
table_name = f"{username + '_watch_list'}"
else: # username is None, use default table
table_name = "stock_watch_list"
QUERY1 = f'''CREATE TABLE IF NOT EXISTS {table_name}
(
tick character varying(5) NOT NULL,
description text,
PRIMARY KEY (tick)
);'''
QUERY2 = f"INSERT INTO {table_name} SELECT 'SPY', 'SPDR S&P 500 ETF Trust' WHERE NOT EXISTS (SELECT NULL FROM {table_name});"
QUERY3 = f"INSERT INTO {table_name} VALUES ('{tick}', '{name}') ON CONFLICT DO NOTHING;"
with connect_db() as conn:
with conn.cursor() as curs:
curs.execute(QUERY1)
curs.execute(QUERY2)
curs.execute(QUERY3)
def hash_password(password):
# Encode the password as bytes
password_bytes = password.encode('utf-8')
# Use SHA-256 hash function to create a hash object
hash_object = hashlib.sha256(password_bytes)
# Get the hexadecimal representation of the hash
password_hash = hash_object.hexdigest()
return password_hash
# def fill_missing_data(df):
# df.ffill(inplace=True)
# df.bfilln(inplace=True)
def fft_convolve(signal, window):
fft_signal = fft(signal)
fft_window = fft(window)
return ifft(fft_signal * fft_window)
def zero_pad(array, n):
"""Extends an array with zeros.
array: numpy array
n: length of result
returns: new NumPy array
"""
res = np.zeros(n)
res[: len(array)] = array
return res
def smooth(price, hsize=10, sigma=3):
"""
Parameters
----------
price : TYPE DataFrame.
DESCRIPTION - with time index and no invalid values
hsize : TYPE integer
DESCRIPTION - this adds phase delay. similar to SMA window
sigma : TYPE float
DESCRIPTION - gaussian standard deviation affects smoothness
Returns
-------
TYPE DataFrame
DESCRIPTION - smoothed price
Doesn't offer much benefit over sma. Only theoretical values. For future
different smooth functiona experiments
"""
data = price.copy()
window = sig.gaussian(M=hsize, std=sigma)
window /= window.sum()
padded = zero_pad(window, data.shape[0])
for col in data.columns:
ys = data[col].values
smooth = abs(fft_convolve(ys, padded))
smooth[0:hsize-1] = np.nan
data[col] = smooth
return data
class security:
"""
This can be a list of stocks, bonds, or otherinvestment vehicles.
price - Pandas DataFrame with datetime as index sorted to chronical order
"""
def __init__(self, sym, price, volume=None, rfr: float = 0.01, sf: float = 252.0):
"""
Parameters
----------
price : TYPE pandas.DataFrame
DESCRIPTION. historical adj. daily close prices of stocks under
consideration
volume : TYPE pandas.DataFrame
DESCRIPTION. daily trading volume. The default is none.
rfr : TYPE float, optional
DESCRIPTION. annualized risk free rate. The default is 0.01.
sf : TYPE sample frequency, optional
DESCRIPTION. The default is 252 (daily). there are 252 trading
days in a year. Monthly sampling frequency would be 12. And
weekly sampling frequenc is 52.
"""
self._symbol = sym
self._price = price
self._volume = volume
# self._symbol = price.columns.values
self._rfr = rfr
self._sf = sf
@property
def symbol(self):
return self._symbol
@symbol.setter
def symbol(self, value):
raise AttributeError('security symbol is read only')
@property
def price(self):
return self._price
@price.setter
def price(self, value):
raise AttributeError('security price is read only')
@property
def volume(self):
if self._volume is None:
raise ValueError('trading volume information not available')
return self._volume
@volume.setter
def volume(self, value):
raise AttributeError('security volume is read only')
def sma(self, window):
return self.price.rolling(window).mean()
def vwma(self, window):
"""
Volume weighted moving average. When plotted against sma, it gives an
early indicator when VWMA crosses SMA. When VWMA is above SMA, it
indicates a strong upward trend and vice versa.
"""
price_vol = self.price * self.volume
return price_vol.rolling(window).sum() / self.volume.rolling(window).sum()
def vosma(self, window):
return self.volume.rolling(window).mean()
def ema(self, window): # default to 14 day window
# EMA pre-process the first point
price = self.price
temp = price.iloc[0:window].mean()
price.iloc[window-1] = temp
price.iloc[0:(window-1)] = np.nan
# process the EMA
avg = price.ewm(span=window, adjust=False).mean()
return avg
def voema(self, window): # default to 14 day window
# EMA pre-process the first point
vol = self.volume
temp = vol.iloc[0:window].mean()
vol.iloc[window-1] = temp
vol.iloc[0:(window-1)] = np.nan
# process the EMA
avg = vol.ewm(span=window, adjust=False).mean()
return avg
def rsi(self, window = 14):
"""
Traditional interpretation and usage of the RSI are that values of 70
or above indicate that a security is becoming overbought or overvalued
and may be primed for a trend reversal or corrective pullback in price.
An RSI reading of 30 or below indicates an oversold or undervalued
condition.
"""
# use exponential averaging
d_chg = self.price.diff()
d_up, d_dn = d_chg.copy(), d_chg.copy()
d_up[d_up < 0] = 0
d_dn[d_dn > 0] = 0
# EMA pre-process the first point
temp = d_up.iloc[1:(window+1)].mean()
d_up.iloc[window] = temp
d_up.iloc[1:window] = np.nan
temp = d_dn.iloc[1:(window+1)].mean()
d_dn.iloc[window] = temp
d_dn.iloc[1:window] = np.nan
# process the EMA
avg_up = d_up.ewm(span=window, adjust=False).mean()
avg_dn = d_dn.ewm(span=window, adjust=False).mean()
rs = avg_up / abs(avg_dn.values)
exp_rsi = 100 - 100 / (1+rs)
return exp_rsi
def volume_rsi(self, window = 14):
"""
The volume RSI (Relative Strength Index) is quite similar to the price
based RSI with difference that up-volume and down-volume are used in
the RSI formula instead changes in price. If price RSI shows relation
between up-moves and down-moves within an analyzed period of time by
revealing which moves are stronger, the volume RSI indicator shows the
relation between volume traded during these price up-moves and
down-moves respectfully by revealing whether up-volume (bullish money
flow) or down-volume (bearish money flow) is stronger.
The same as price RSI, volume RSI oscillates around 50% center-line in
the range from 0 to 100%. In technical analysis this indicator could be
used in the same way as well. The simplest way of using the volume RSI
would be to generate trading signals on the crossovers of the indicator
and 50% center-line around which it oscillates. Here you have to
remember following:
volume RSI reading above 50% are considered bullish as bullish volume
dominates over bearish volume; volume RSI readings below 50% are
considered bearish as bearish volume overcomes bullish volume.
Respectfully, technical analysis would suggest to generate buy/sell
signals by following rules:
Buy when indicators moves above 50% line after being below it;
Sell when indicator drops below 50% line after being above it.
"""
# use exponential averaging
volume = self.volume
up_vol, dn_vol = volume.copy(), volume.copy()
d_chg = self.price.diff()
up_vol[d_chg < 0] = 0
dn_vol[d_chg > 0] = 0
up_vol.iloc[0] = np.nan
dn_vol.iloc[0] = np.nan
# EMA pre-process the first point
temp = up_vol.iloc[1:(window+1)].mean()
up_vol.iloc[window] = temp
up_vol.iloc[1:window] = np.nan
temp = dn_vol.iloc[1:(window+1)].mean()
dn_vol.iloc[window] = temp
dn_vol.iloc[1:window] = np.nan
# EMA processing
avg_up = up_vol.ewm(span=window, adjust=False).mean()
avg_dn = dn_vol.ewm(span=window, adjust=False).mean()
rs = avg_up / avg_dn.values
exp_rsi = 100 - 100 / (1+rs)
return exp_rsi
def daily_returns(self):
return self.price.pct_change()
@property
def annualized_return(self):
dr = self.daily_returns()
return self._sf * dr.mean()
@property
def annualized_stdev(self):
dr = self.daily_returns()
return np.sqrt(self._sf) * dr.std()
@property
def sharpe(self):
return (self.annualized_return - self._rfr) / self.annualize_stdev
def rolling_stdev(self, window):
return self.price.rolling(window).std()
def bollinger(self, window):
"""
Parameters
----------
window : TYPE int, optional
DESCRIPTION - averaging window in days.
Returns
-------
lower, upper : TYPE pandas.DataFrame
DESCRIPTION - lower band (minus 2 sigma) and the upper band.
"""
avg = self.sma(window)
sdd2 = self.rolling_stdev(window).mul(2)
lower = avg.sub(sdd2.values)
upper = avg.add(sdd2.values)
# low_up = lower.join(upper, lsuffix='_L', rsuffix='_U')
return lower, upper
def macd(self, short_wd = 12, long_wd = 26, sig_wd = 9):
"""
MACD Line: (12-day EMA - 26-day EMA)
Signal Line: 9-day EMA of MACD Line
MACD Histogram: MACD Line - Signal Line
MACD is calculated by subtracting the 26-period EMA from the 12-period
EMA. MACD triggers technical signals when it crosses above (to buy) or
below (to sell) its signal line. The speed of crossovers is also taken
as a signal of a market is overbought or oversold. MACD helps investors
understand whether the bullish or bearish movement in the price is
strengthening or weakening
MACD historgram represents signal line crossovers that are the most
common MACD signals. The signal line is a 9-day EMA of the MACD line.
As a moving average of the indicator, it trails the MACD and makes it
easier to spot MACD turns. A bullish crossover occurs when the MACD
turns up and crosses above the signal line. A bearish crossover occurs
when the MACD turns down and crosses below the signal line. Crossovers
can last a few days or a few weeks, depending on the strength of the
move.
"""
macd_short = self.ema(short_wd)
macd_long = self.ema(long_wd)
macd_line = macd_short - macd_long.values
macd_sig = macd_line.ewm(span=sig_wd, adjust=False).mean()
macd_hist = macd_line - macd_sig.values
norm_hist = macd_hist.div(macd_long.values)
return macd_line, macd_sig, macd_hist, norm_hist
def get_crossing(stocks):
"""
Parameters
----------
stocks : TYPE instance of class 'security'
Returns
-------
cross : TYPE pandas DataFrame
DESCRIPTION - +1 when 50 day moving average is above 200 day moving
average. -1 when vice versa. transition days are of value +3 and -3
respectively.
"""
sma50 = stocks.sma(50)
sma200 = stocks.sma(200)
cross = np.sign(sma50.sub(sma200.values))
cross_diff = cross.diff()
cross = cross.add(cross_diff.values)
cross.columns = stocks.price.columns
return cross
def get_sma_slope(stocks, wd = 50):
"""
Parameters
----------
stocks : TYPE
DESCRIPTION.
wd : TYPE, optional
DESCRIPTION. The default is 50.
Returns
-------
slope : TYPE pandas DataFrame
DESCRIPTION - +1 when n day moving average is positive. -1 when
negative. transition days are of value +3 and -3 respectively.
"""
sma = stocks.sma(wd)
slope = np.sign(sma.diff())
slope_diff = slope.diff()
slope = slope.add(slope_diff.values)
return slope
LB_YEAR = 3 # years of stock data to retrieve LB_YEAR = 3 # years of stock data to retrieve
# PLT_YEAR = 2 # number of years data to plot # PLT_YEAR = 2 # number of years data to plot
LB_TRIGGER = 5 # days to lookback for triggering events LB_TRIGGER = 5 # days to lookback for triggering events
@ -711,7 +283,7 @@ app.clientside_callback(
Input("remove-button", "n_clicks"), Input("remove-button", "n_clicks"),
State("symbols_dropdown_list", "value") State("symbols_dropdown_list", "value")
) )
def remove_ticker(n, sym_raw): def remove_ticker(n, sym_raw : str):
if n and len(sym_raw) > 0: if n and len(sym_raw) > 0:
sym = sym_raw.split()[0] sym = sym_raw.split()[0]
remove_from_db(auth.username, sym.upper()) remove_from_db(auth.username, sym.upper())
@ -722,13 +294,18 @@ def remove_ticker(n, sym_raw):
@callback(Output('signaling', component_property='data'), @callback(Output('signaling', component_property='data'),
Input('input-ticker', component_property='value')) Input('input-ticker', component_property='value'))
def update_tickers(ticker): def update_tickers(ticker : str):
if ticker: if ticker:
ticker_upper = ticker.upper() ticker_upper = ticker.upper()
long_name = StockMapper().ticker_to_company_name.get(ticker_upper) long_name = StockMapper().ticker_to_company_name.get(ticker_upper)
if long_name: if long_name:
insert_into_db(auth.username, ticker_upper, long_name) insert_into_db(auth.username, ticker_upper, long_name)
return ticker_upper return ticker_upper
else:
long_name = MutualFundMapper().ticker_to_series_id.get(ticker_upper)
if long_name:
insert_into_db(auth.username, ticker_upper, 'Mutual Fund - ' + long_name)
return ticker_upper
return no_update return no_update
# start / stop button callback # start / stop button callback
@ -736,8 +313,8 @@ def update_tickers(ticker):
Output("start-button", "children"), Output("start-button", "children"),
Output('symbols_dropdown_list', 'disabled'), Output('symbols_dropdown_list', 'disabled'),
Input("start-button", "n_clicks"), Input("start-button", "n_clicks"),
State("start-button", "children"),) State("start-button", "children"),
)
def start_cycle(n, value): def start_cycle(n, value):
if n: if n:
if value == "Pause": if value == "Pause":
@ -746,6 +323,13 @@ def start_cycle(n, value):
return False, "Pause", True return False, "Pause", True
return no_update return no_update
# clear input
@callback(Output('input-ticker', component_property='value'),
Input("signaling", "data"),
)
def clear_input(d):
return ''
# reload button callback # reload button callback
@callback(Output('symbols_dropdown_list', 'options'), @callback(Output('symbols_dropdown_list', 'options'),
Output('interval-component', 'n_intervals'), Output('interval-component', 'n_intervals'),

6
subroutines/__init__.py Normal file
View File

@ -0,0 +1,6 @@
# Define the __all__ variable
__all__ = ["security", "remove_from_db", "insert_into_db", "get_watchlist"]
# Import the submodules
from .security import security, get_crossing, get_sma_slope
from .dbutil import remove_from_db, insert_into_db, get_watchlist

125
subroutines/dbutil.py Normal file
View File

@ -0,0 +1,125 @@
import hashlib
import psycopg2
import sys
import os
import pandas as pd
def connect_db(host, database, user, password):
"""Connect to database
Returns:
psycopg2 connector: psycopg2 postgresql connector
"""
conn = None
try:
conn = psycopg2.connect(
host=os.environ['DB_PATH'],
database=os.environ['DB_NAME'],
user=os.environ['DB_USERNAME'],
password=os.environ['DB_PASSWORD'],
)
except (Exception, psycopg2.DatabaseError) as error:
print(error)
sys.exit(1)
return conn
def get_watchlist(username : str):
"""Read list of tickers/descriptions from database
Args:
username (str): database table prefix
Returns:
Pandas DataFrame: it has two columns - first column is ticker, second column is description
"""
if username:
table_name = f"{username + '_watch_list'}"
else: # username is None, use default table
table_name = "stock_watch_list"
QUERY1 = f'''CREATE TABLE IF NOT EXISTS {table_name}
(
tick character varying(5) NOT NULL,
description text,
PRIMARY KEY (tick)
);'''
QUERY2 = f"INSERT INTO {table_name} SELECT 'SPY', 'SPDR S&P 500 ETF Trust' WHERE NOT EXISTS (SELECT NULL FROM {table_name});"
QUERY3 = f"SELECT * FROM {table_name};"
with connect_db() as conn:
with conn.cursor() as curs:
curs.execute(QUERY1)
curs.execute(QUERY2)
curs.execute(QUERY3)
tuples_list = curs.fetchall()
df = pd.DataFrame(tuples_list)
return df
def remove_from_db(username, tick):
"""Remove a row from database table using ticker as key
Args:
username (str): database table prefix
tick (str): ticker
"""
if username:
table_name = f"{username + '_watch_list'}"
else: # username is None, use default table
table_name = "stock_watch_list"
QUERY = f"DELETE FROM {table_name} WHERE tick = '{tick}';"
with connect_db() as conn:
with conn.cursor() as curs:
curs.execute(QUERY)
def insert_into_db(username : str, tick : str, name : str):
"""Insert ticker and description into database
Args:
username (str): database table prefix - each user has its own list of tickers
tick (str): stock or mutual fund ticker
name (str): company name for stock, series ID for mutual fund
"""
if username:
table_name = f"{username + '_watch_list'}"
else: # username is None, use default table
table_name = "stock_watch_list"
QUERY1 = f'''CREATE TABLE IF NOT EXISTS {table_name}
(
tick character varying(5) NOT NULL,
description text,
PRIMARY KEY (tick)
);'''
QUERY2 = f"INSERT INTO {table_name} SELECT 'SPY', 'SPDR S&P 500 ETF Trust' WHERE NOT EXISTS (SELECT NULL FROM {table_name});"
QUERY3 = f"INSERT INTO {table_name} VALUES ('{tick}', '{name}') ON CONFLICT DO NOTHING;"
with connect_db() as conn:
with conn.cursor() as curs:
curs.execute(QUERY1)
curs.execute(QUERY2)
curs.execute(QUERY3)
def hash_password(password : str):
"""Generate hash from string using sha256
Args:
password (str): any text
Returns:
str: hash string
"""
# Encode the password as bytes
password_bytes = password.encode('utf-8')
# Use SHA-256 hash function to create a hash object
hash_object = hashlib.sha256(password_bytes)
# Get the hexadecimal representation of the hash
password_hash = hash_object.hexdigest()
return password_hash

341
subroutines/security.py Normal file
View File

@ -0,0 +1,341 @@
import numpy as np
from numpy.fft import fft, ifft
import scipy.signal as sig
class security:
"""
This can be a list of stocks, bonds, or otherinvestment vehicles.
price - Pandas DataFrame with datetime as index sorted to chronical order
"""
def __init__(self, sym, price, volume=None, rfr: float = 0.01, sf: float = 252.0):
"""
Parameters
----------
price : TYPE pandas.DataFrame
DESCRIPTION. historical adj. daily close prices of stocks under
consideration
volume : TYPE pandas.DataFrame
DESCRIPTION. daily trading volume. The default is none.
rfr : TYPE float, optional
DESCRIPTION. annualized risk free rate. The default is 0.01.
sf : TYPE sample frequency, optional
DESCRIPTION. The default is 252 (daily). there are 252 trading
days in a year. Monthly sampling frequency would be 12. And
weekly sampling frequenc is 52.
"""
self._symbol = sym
self._price = price
self._volume = volume
# self._symbol = price.columns.values
self._rfr = rfr
self._sf = sf
@property
def symbol(self):
return self._symbol
@symbol.setter
def symbol(self, value):
raise AttributeError('security symbol is read only')
@property
def price(self):
return self._price
@price.setter
def price(self, value):
raise AttributeError('security price is read only')
@property
def volume(self):
if self._volume is None:
raise ValueError('trading volume information not available')
return self._volume
@volume.setter
def volume(self, value):
raise AttributeError('security volume is read only')
def sma(self, window):
return self.price.rolling(window).mean()
def vwma(self, window):
"""
Volume weighted moving average. When plotted against sma, it gives an
early indicator when VWMA crosses SMA. When VWMA is above SMA, it
indicates a strong upward trend and vice versa.
"""
price_vol = self.price * self.volume
return price_vol.rolling(window).sum() / self.volume.rolling(window).sum()
def vosma(self, window):
return self.volume.rolling(window).mean()
def ema(self, window): # default to 14 day window
# EMA pre-process the first point
price = self.price
temp = price.iloc[0:window].mean()
price.iloc[window-1] = temp
price.iloc[0:(window-1)] = np.nan
# process the EMA
avg = price.ewm(span=window, adjust=False).mean()
return avg
def voema(self, window): # default to 14 day window
# EMA pre-process the first point
vol = self.volume
temp = vol.iloc[0:window].mean()
vol.iloc[window-1] = temp
vol.iloc[0:(window-1)] = np.nan
# process the EMA
avg = vol.ewm(span=window, adjust=False).mean()
return avg
def rsi(self, window = 14):
"""
Traditional interpretation and usage of the RSI are that values of 70
or above indicate that a security is becoming overbought or overvalued
and may be primed for a trend reversal or corrective pullback in price.
An RSI reading of 30 or below indicates an oversold or undervalued
condition.
"""
# use exponential averaging
d_chg = self.price.diff()
d_up, d_dn = d_chg.copy(), d_chg.copy()
d_up[d_up < 0] = 0
d_dn[d_dn > 0] = 0
# EMA pre-process the first point
temp = d_up.iloc[1:(window+1)].mean()
d_up.iloc[window] = temp
d_up.iloc[1:window] = np.nan
temp = d_dn.iloc[1:(window+1)].mean()
d_dn.iloc[window] = temp
d_dn.iloc[1:window] = np.nan
# process the EMA
avg_up = d_up.ewm(span=window, adjust=False).mean()
avg_dn = d_dn.ewm(span=window, adjust=False).mean()
rs = avg_up / abs(avg_dn.values)
exp_rsi = 100 - 100 / (1+rs)
return exp_rsi
def volume_rsi(self, window = 14):
"""
The volume RSI (Relative Strength Index) is quite similar to the price
based RSI with difference that up-volume and down-volume are used in
the RSI formula instead changes in price. If price RSI shows relation
between up-moves and down-moves within an analyzed period of time by
revealing which moves are stronger, the volume RSI indicator shows the
relation between volume traded during these price up-moves and
down-moves respectfully by revealing whether up-volume (bullish money
flow) or down-volume (bearish money flow) is stronger.
The same as price RSI, volume RSI oscillates around 50% center-line in
the range from 0 to 100%. In technical analysis this indicator could be
used in the same way as well. The simplest way of using the volume RSI
would be to generate trading signals on the crossovers of the indicator
and 50% center-line around which it oscillates. Here you have to
remember following:
volume RSI reading above 50% are considered bullish as bullish volume
dominates over bearish volume; volume RSI readings below 50% are
considered bearish as bearish volume overcomes bullish volume.
Respectfully, technical analysis would suggest to generate buy/sell
signals by following rules:
Buy when indicators moves above 50% line after being below it;
Sell when indicator drops below 50% line after being above it.
"""
# use exponential averaging
volume = self.volume
up_vol, dn_vol = volume.copy(), volume.copy()
d_chg = self.price.diff()
up_vol[d_chg < 0] = 0
dn_vol[d_chg > 0] = 0
up_vol.iloc[0] = np.nan
dn_vol.iloc[0] = np.nan
# EMA pre-process the first point
temp = up_vol.iloc[1:(window+1)].mean()
up_vol.iloc[window] = temp
up_vol.iloc[1:window] = np.nan
temp = dn_vol.iloc[1:(window+1)].mean()
dn_vol.iloc[window] = temp
dn_vol.iloc[1:window] = np.nan
# EMA processing
avg_up = up_vol.ewm(span=window, adjust=False).mean()
avg_dn = dn_vol.ewm(span=window, adjust=False).mean()
rs = avg_up / avg_dn.values
exp_rsi = 100 - 100 / (1+rs)
return exp_rsi
def daily_returns(self):
return self.price.pct_change()
@property
def annualized_return(self):
dr = self.daily_returns()
return self._sf * dr.mean()
@property
def annualized_stdev(self):
dr = self.daily_returns()
return np.sqrt(self._sf) * dr.std()
@property
def sharpe(self):
return (self.annualized_return - self._rfr) / self.annualize_stdev
def rolling_stdev(self, window):
return self.price.rolling(window).std()
def bollinger(self, window):
"""
Parameters
----------
window : TYPE int, optional
DESCRIPTION - averaging window in days.
Returns
-------
lower, upper : TYPE pandas.DataFrame
DESCRIPTION - lower band (minus 2 sigma) and the upper band.
"""
avg = self.sma(window)
sdd2 = self.rolling_stdev(window).mul(2)
lower = avg.sub(sdd2.values)
upper = avg.add(sdd2.values)
# low_up = lower.join(upper, lsuffix='_L', rsuffix='_U')
return lower, upper
def macd(self, short_wd = 12, long_wd = 26, sig_wd = 9):
"""
MACD Line: (12-day EMA - 26-day EMA)
Signal Line: 9-day EMA of MACD Line
MACD Histogram: MACD Line - Signal Line
MACD is calculated by subtracting the 26-period EMA from the 12-period
EMA. MACD triggers technical signals when it crosses above (to buy) or
below (to sell) its signal line. The speed of crossovers is also taken
as a signal of a market is overbought or oversold. MACD helps investors
understand whether the bullish or bearish movement in the price is
strengthening or weakening
MACD historgram represents signal line crossovers that are the most
common MACD signals. The signal line is a 9-day EMA of the MACD line.
As a moving average of the indicator, it trails the MACD and makes it
easier to spot MACD turns. A bullish crossover occurs when the MACD
turns up and crosses above the signal line. A bearish crossover occurs
when the MACD turns down and crosses below the signal line. Crossovers
can last a few days or a few weeks, depending on the strength of the
move.
"""
macd_short = self.ema(short_wd)
macd_long = self.ema(long_wd)
macd_line = macd_short - macd_long.values
macd_sig = macd_line.ewm(span=sig_wd, adjust=False).mean()
macd_hist = macd_line - macd_sig.values
norm_hist = macd_hist.div(macd_long.values)
return macd_line, macd_sig, macd_hist, norm_hist
def get_crossing(stocks):
"""
Parameters
----------
stocks : TYPE instance of class 'security'
Returns
-------
cross : TYPE pandas DataFrame
DESCRIPTION - +1 when 50 day moving average is above 200 day moving
average. -1 when vice versa. transition days are of value +3 and -3
respectively.
"""
sma50 = stocks.sma(50)
sma200 = stocks.sma(200)
cross = np.sign(sma50.sub(sma200.values))
cross_diff = cross.diff()
cross = cross.add(cross_diff.values)
cross.columns = stocks.price.columns
return cross
def get_sma_slope(stocks, wd = 50):
"""
Parameters
----------
stocks : TYPE
DESCRIPTION.
wd : TYPE, optional
DESCRIPTION. The default is 50.
Returns
-------
slope : TYPE pandas DataFrame
DESCRIPTION - +1 when n day moving average is positive. -1 when
negative. transition days are of value +3 and -3 respectively.
"""
sma = stocks.sma(wd)
slope = np.sign(sma.diff())
slope_diff = slope.diff()
slope = slope.add(slope_diff.values)
return slope
def fill_missing_data(df):
df.ffill(inplace=True)
df.bfilln(inplace=True)
def fft_convolve(signal, window):
fft_signal = fft(signal)
fft_window = fft(window)
return ifft(fft_signal * fft_window)
def zero_pad(array, n):
"""Extends an array with zeros.
array: numpy array
n: length of result
returns: new NumPy array
"""
res = np.zeros(n)
res[: len(array)] = array
return res
def smooth(price, hsize=10, sigma=3):
"""
Parameters
----------
price : TYPE DataFrame.
DESCRIPTION - with time index and no invalid values
hsize : TYPE integer
DESCRIPTION - this adds phase delay. similar to SMA window
sigma : TYPE float
DESCRIPTION - gaussian standard deviation affects smoothness
Returns
-------
TYPE DataFrame
DESCRIPTION - smoothed price
Doesn't offer much benefit over sma. Only theoretical values. For future
different smooth functiona experiments
"""
data = price.copy()
window = sig.gaussian(M=hsize, std=sigma)
window /= window.sum()
padded = zero_pad(window, data.shape[0])
for col in data.columns:
ys = data[col].values
smoo = abs(fft_convolve(ys, padded))
smoo[0:hsize-1] = np.nan
data[col] = smoo
return data